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Figure 1. EgoAllo. We present a system that estimates human body pose, height, and hand parameters from egocentric SLAM poses and images.
Outputs capture the wearer’s actions in the allocentric reference frame of the scene, which we visualize here with 3D reconstructions.

Abstract

We present EgoAllo, a system for human motion estimation
from a head-mounted device. Using only egocentric SLAM
poses and images, EgoAllo guides sampling from a conditional
diffusion model to estimate 3D body pose, height, and hand
parameters that capture a device wearer’s actions in the allo-
centric coordinate frame of the scene. To achieve this, our key
insight is in representation: we propose spatial and temporal
invariance criteria for improving model performance, from
which we derive a head motion conditioning parameterization
that improves estimation by up to 18%. We also show how
the bodies estimated by our system can improve the hands:
the resulting kinematic and temporal constraints can reduce
errors in noisy monocular estimates by 40%. Project page:
https://egoallo.github.io

1. Introduction

Head-mounted devices are permeating the mainstream market,
with applications in areas like virtual reality, content creation,

and assistive technologies. For research in machine perception,
these devices also present exciting opportunities in the form
of egocentric sensing. Sensors from wearable devices provide
abundant observations of 3D environments, while capturing the
embodied perspective of human agents as they navigate and
interact with the world around them.

What can we understand from these devices as their adop-
tion widens? As a starting point, parallax-inducing egomotion
provides excellent conditions for advances in 3D reconstruction
and scene understanding [17, 65, 109]. Limiting perception to
only the surrounding world, however, would neglect a crucial
piece of the ego-sensory puzzle: the individual whose decisions
shape the inputs. Capturing the wearer’s actions and motion in
addition to the scene promises to unlock applications across aug-
mented and virtual reality, robotics, and general human behavior
analysis, while unveiling action-tied semantics in the scene itself.

We therefore introduce EgoAllo, a system that uses ego-
centric inputs to estimate the wearer’s actions in the allocentric
frame of the world. This is a difficult task: while body parts like
hands occasionally appear in egocentric image frames, most
body parameters are never directly observed by these devices.
Accurate estimates in the global frame also require harmony
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between both pose and height parameters. These must be con-
sistent with the egomotion and scene scale, aligning estimated
feet to the ground and head to the sensed camera height.

We cast estimation as guided sampling from a human
motion diffusion model. We consider two inputs: head poses
from SLAM and visual hand observations from images. We
then estimate body pose, height, and hand parameters, unlike
most prior works in egocentric human motion estimation [6, 46]
that focus on body pose.

We achieve this by training a head motion-conditioned
diffusion model as a motion prior, and guiding its sampling
to recover a hand-body sequence that aligns with image
observations. Our results are enabled by a key insight: that the
representation used for head pose conditioning is critical for ac-
curate ego-sensed motion estimation. We study choices for this
representation by (1) identifying desirable spatial and temporal
invariance properties that are not fulfilled by existing systems,
(2) using these properties to derive improved parameterizations
for our motion prior, and (3) presenting a systematic evaluation
that shows between 4.9% and 17.9% error difference when
compared against prior work. Furthermore, we show how the
resulting system can improve hand estimation, reducing errors
by over 40% compared to noisy monocular estimates.

2. Related Work

3D human recovery from external visual inputs. A large body
of work has addressed estimating the parameters of human body
models like SCAPE [2] or SMPL and its variants [50, 60, 76]
from third-person visual inputs, where human subjects are
observed from the view of outside cameras. The majority of
these works focus on extracting 3D representations from single
images, for example by lifting 2D keypoint observations to
3D [55], via end-to-end regression [19, 30, 32, 38, 57, 59, 74],
via optimization [18, 42, 60], or by exploiting synergies
between regression and optimization [40]. When multiple
frames are available in the form of a video, temporal context and
tracking can also be incorporated [15, 33, 37, 61, 62, 68, 106].
The inputs (images) and outputs (human meshes) of many of
these systems are similar to the egocentric setting addressed
by EgoAllo, but egocentric devices present unique challenges
because the body being estimated is typically behind the
outwards-facing cameras used as input.

Priors for human motion. The primary challenge of ego-
sensed human motion estimation is limited observability; a
prior is required to resolve ambiguities. For human motion,
these priors are typically framed as unconditional distributions
over plausible human motions. These distributions can be
represented either by modeling the physical constraints of
our world [5, 48, 64, 70] or by learning generative models of
human motion directly from data. For learning unconditional
priors, classical data-driven approaches include fitting mixtures-
of-Gaussians to 3D keypoint trajectories [24], while modern

approaches include training variational autoencoders [36, 72]
to model either autoregressive transitions [14, 49, 71] or full
spatiotemporal sequences [21]. After training, these priors
can be applied to estimation problems in iterative optimization
frameworks [39, 71, 99]. EgoAllo is built on the same intuition
as these methods, but follows previous work in ego-sensed
motion estimation and uses a task-specific conditional prior.

Denoising diffusion for human motion. The core of EgoAllo
is a denoising diffusion model [22, 66, 81] from which we
can sample 3D human body motion. While diffusion mod-
els are primarily known for their success in text-conditioned
image generation [75, 77], they have also enabled advances
in human motion synthesis conditioned on modalities like
text [34, 35, 110], music [1, 90], poses [34, 46], and object geom-
etry [41, 45, 47]. EgoAllo adopts a similar conditional diffusion
approach, while specifically studying the design of condition-
ing parameters used for ego-sensed human motion estimation.
The iterative nature of denoising diffusion also enables guid-
ance [10, 12, 29, 34, 84, 112], where denoising steps are steered
to satisfy a desired objective. We use guidance to incorporate
observations like visual hand pose observations during test-time.

Human motion from egocentric observations. EgoAllo builds
on intuition from several prior works in egocentric sensing for
human motion estimation. Many rely on fisheye cameras that
place the wearer’s body into the field of view [26, 73, 88, 88,
89, 92, 93, 95]. Other approaches rely on body-mounted cam-
eras [80], simulation-based physical plausibility [52, 104, 105],
body- and hand-mounted inertial sensors [44, 102, 103], hand-
held controllers [6, 27, 28], and interaction cues from other hu-
mans [56]. Concurrent works have also used the Nymeria [53]
dataset for egocentric motion with language description out-
puts [23], as well for online settings with scene geometry and
CLIP [67] feature inputs [20]. Most relevantly, EgoEgo [46]
demonstrates how human body poses can be estimated offline
without body observability assumptions. The authors accom-
plish this by carefully integrating several components: a monocu-
lar SLAM system [86], a pose-conditioned gravity vector regres-
sion network, an optical flow feature-conditioned head orienta-
tion and scale regression network, and a head pose-conditioned
body diffusion model. EgoAllo differs in both inputs—we study
conditioning parameters computed from the metric SLAM poses
provided by devices like Project Aria [82]—and outputs—we
consider body height variation and hand poses.

Conditioning for ego-sensed poses. Prior works vary in how
head pose information is parameterized and used as neural
network input. AvatarPoser [27] and BoDiffusion [6] param-
eterize head pose as four components: world-frame orientation,
orientation deltas, world-frame position, and world-frame
position deltas. These works are focused on settings with VR
controller input, and parameterize controller pose inputs the
same way. EgoEgo [46]’s diffusion model uses only absolute
head positions and orientations, but, similar to HuMoR [71],
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Figure 2. Overview of components in EgoAllo. We restrict the diffusion model to local body parameters {Θt,βt}t,{ψt
j}t,j (Section 3.1.1). An

invariant parameterization (Section 3.1.2) of SLAM poses is used to condition a diffusion model. These can be placed into the global coordinate
frame via global alignment (Section 3.2.1) to input poses. When available, egocentric video is used for hand detection via HaMeR [63], which
can be incorporated into samples via guidance (Section 3.2.2).

in implementation defines a per-sequence canonical coordinate
frame to ensure that all input trajectories passed to the model are
aligned with the same initial xy position and forward direction.
In our work, we will refer to this as sequence canonicalization.
Finally, EgoPoser [28] proposes a similar scheme that aligns
initial positions for both head pose and controller pose inputs.
We propose an alternative to these parameterizations that
is motivated by the robustness and generalization benefits
of invariance, as observed in prior work for designing both
representations [9, 51, 78, 94, 101, 108, 113] and neural
network architectures [7, 8, 11, 13, 31, 43, 87, 97, 98, 107].
Specifically, we introduce in Section 3.1.2 a parameterization
that is invariant to both spatial and temporal shifts.

3. Method
We study the problem of using sensors from an egocentric
device to estimate the actions of the wearer in an allocentric coor-
dinate frame. We assume a flat floor and two egocentric inputs:
poses from the device’s SLAM system and camera images.

Our system uses head pose information to condition a
diffusion-based prior over body pose and height, and incorpo-
rates visual hand observations during sampling. This allows
it to benefit from both 3D human motion capture datasets [54],
which are used for the motion prior, and from large-scale image
datasets [63], which are used for hand estimates.

3.1. Ego-conditioned motion diffusion

Notation: we use TA,B=(RA,B,pA,B) to denote an SE(3) trans-
form to frame A from frame B, composed of rotation (RA,B)
and position (pA,B) terms. Temporal steps t are superscripted
and diffusion noise steps n are subscripted. x⃗t0 thus refers to

the t-th timestep of a clean (n=0) human motion sequence.
Given an observation window of T timesteps, EgoAllo’s

motion prior is a diffusion model that aims to capture the
distribution of human motions x⃗0={x⃗ 1

0 ,...,⃗x
T
0 } conditioned

on head pose encodings c⃗= {⃗c 1,...,⃗c T}. For each timestep t,
we represent human motion in the form of SMPL-H [50, 76]
model parameters {Tt

world,root, Θ
t, β}: root transforms

Tt
world,root∈SE(3), where the person’s root frame is located at

their pelvis, axis-angle local joint rotations Θt ∈R51×3, and
time-invariant shape β∈R16.

Dependencies between local joint rotations, body size
variation, and global motion make this learning task a
challenging one. Our key insight is that this difficulty can
be reduced by designing parameterizations with desirable
invariance properties. Spatial and temporal invariances allow
the model to focus on the essential structure of motion, without
being affected by irrelevant shifts in position or time.

3.1.1 Diffusion output representation

As output, we sample joint rotations, body shapes, and binary
contact predictions x⃗t0 = {Θt, βt, ψt

j=1...21}, where body
shape βt is supervised to be equal for all timesteps and ψt

j

is a per-joint contact indicator. Notably, these parameters
are all local—we discuss how outputs can be placed into the
allocentric coordinate frame in Section 3.2.1.

We choose this output set for three main reasons. (1) Body
shape encodes the wearer’s height, which is critical for
grounding in the metric-scale geometry of the scene. This is
rarely considered by prior work: with the exception of [28],
which is focused on tracking with controller input, existing



methods [6, 27, 46] otherwise produce outputs using a fixed
“mean” human shape. (2) Contact predictions enable losses
for common problems like foot skating, which are discussed
in Section 3.2.2. (3) Finally, local bodies are invariant to the
global coordinate frame. As we discuss next, the conditioning
parameterization for the model can therefore also be invariant
to arbitrary transformations along the floor plane.

3.1.2 Invariant conditioning

The goal of our conditioning representation is to map raw
SLAM poses (head motion) to a parameterization that is
amenable to learning for the diffusion model.

Raw inputs. To capture the head motion at each time step,
we assume as input poses of a central pupil frame (CPF),
which the SLAM systems of devices like Project Aria can
provide with millimeter-level accuracy [82]. For time 1...T , we
reparameterize these poses for conditioning using a function g:

Tt
world,cpf=(Rt

world,cpf,p
t
world,cpf)∈SE(3), (1)

{⃗c 1,...,⃗c T}=g({T1
world,cpf,...,T

T
world,cpf}). (2)

The CPF frame differs from prior works that condition on a
coordinate frame attached to the SMPL human model’s “head
joint” [6, 27, 28, 46]. The offset between this head joint and
the device pose depends on the head shape captured by βt, and
is thus difficult to precompute in our setting.

To encode absolute height, we assume that the world
frame’s +z-axis faces upwards, and that the ground is located at
z=0. Ground parameters are directly available in the training
data [54]; at test time, we can also extract these parameters
from sparse SLAM points via RANSAC (Appendix A.1).

Invariance goals. As discussed in Section 2, prior work varies
in how the function g is implemented. To understand how
choices impact learning, we propose two invariance properties
for head motion representations. Each reduces representational
redundancy, which eases the learning problem.

Invariance 1 (Spatial) Global transformations along the
floor plane should not affect a person’s local motion. Given
Txy ∈ SE(3) restricted to the XY plane, g should fulfill
g({TxyT

t
world,cpf}t)=g({Tt

world,cpf}t) ∀Txy.

Invariance 2 (Temporal) Head motion representations for a
given body motion should be independent of location within
a temporal window. This can be expressed as temporal shift
equivariance. Let c⃗ t be as defined in Equation 2. For any
shift δ such that {⃗c 1

shift,...,⃗c
T

shift}= g({T1+δ
world,cpf,...,T

T+δ
world,cpf}),

g should satisfy c⃗ t
shift= c⃗

t+δ for overlapping timesteps.

No parameterization used by existing work satisifies both of
these properties. The sequence canonicalization approach
of EgoEgo [46] achieves spatial invariance (Invariance 1),

CPF
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Figure 3. Locally canonicalized coordinate frames. We compute
our invariant conditioning parameterization (Equation 4) using
transformations computed from three coordinate frames. Following
[82], the CPF has the z-axis forward. Following HuMoR [71], the
world and canonical z-axes point up. Canonical frames are computed
by projecting the CPF frame origin to the ground plane, then aligning
the canonical y-axis to the CPF forward direction.

but inserts a sequence-wide dependency on the first timestep
of each window that results in a violation of Invariance 2.
The absolute poses and pose deltas used by [6, 27] satisfy
Invariance 2, but not Invariance 1. Finally, the relative positions
considered by [28] are neither spatially nor temporally invariant.

Invariant conditioning. We propose a formulation for g that
achieves both invariance properties by locally canonicalizing
head motion with respect to the floor at each timestep. We build
on the relative motion of the CPF frame at each time t, which
respects both Invariance 1 and 2:

∆Tt−1,t
cpf =(Tt−1

world,cpf)
−1Tt

world,cpf. (3)

Importantly, the translation component of this transformation
is in the local frame. This is distinct from world-frame position
deltas [6, 27, 28], which still violate Invariance 1.

Relative transforms alone, however, do not encode informa-
tion relative to the scene or floor: full trajectories can even be
flipped upside down without impacting ∆Tt−1,t

cpf . We therefore
propose to ground relative motion to the floor plane with a
transformation between the CPF frame and a per-timestep
canonical frame, which is computed by projecting the CPF
frame to the floor. This encodes head height and orientation.
Our full representation then becomes:

c⃗ t=
{
∆Tt−1,t

cpf , (Tt
world,canonical)

−1Tt
world,cpf

}
︸ ︷︷ ︸

Invariant implementation of g(·)

. (4)

We visualize an example of a canonical frame in Figure 3.
Canonical frames are positioned by projecting the CPF origin
to the floor plane; given standard bases e{x,y,z}, we compute:

pt
world,canonical=

[
ex ey 0⃗

]⊤
pt

world,cpf. (5)



For orientation, we align the canonical frame’s local z-axis
parallel to the world z-axis and its local y-axis toward the “for-
ward” direction v⃗t of the CPF frame. With Rz(·):R→SO(3)
constructing a z-axis rotation and e{x,y,z} again as standard
bases, we compute this as:

v⃗t=Rt
world,cpfez, (6)

Rt
world,canonical=Rz

(
−arctan2

(
e⊤x v⃗

t,e⊤y v⃗
t
))
Rt

world,cpf. (7)

This canonical frame definition is an important departure from
prior work. While EgoEgo [46] and HuMoR [71] use similar
canonical frames, they only compute one per sequence. Instead,
we compute Equations 5 and 7 at every timestep. This enables
floor plane grounding without sacrificing Invariance 2.

3.2. Estimation via sampling

We use our local body representation and invariant conditioning
strategies to train a motion prior in the form a denoising
diffusion model [22]. Given diffusion step n = N ...1, we
follow [69] and approximate the denoising process as:

pθ(⃗xn−1|⃗xn,⃗c)=N (µθ(⃗xn,n,⃗c),σ
2
nI), (8)

where a transformer [91] µθ is trained to predict the posterior
mean from noised sample x⃗n and conditioning c⃗. With
noise-dependent weight term wn, the loss can be written as:

min
θ

Ex⃗0
En∼U

[
wn∥µθ(⃗xn,n,⃗c)−x⃗0∥2

]
. (9)

After training, we estimate human motions by following
DDIM [83] for sampling. The final EgoAllo sampling
procedure includes several additional components: a global
alignment phase, guidance losses for physical constraints and
visual hand observations, and a path fusion [3] approach for
longer sequence lengths. We describe these below.

3.2.1 Global alignment

To place sampled bodies into the allocentric coordinate system,
we compute the absolute pose of the SMPL-H root as:

Tt
world,root=Tt

world,cpfT
(Θt,βt)
cpf,root , (10)

where T(Θt,βt)
cpf,root computes the transform between the root of the

human and their CPF frame for a given set of local pose and
shape parameters. Similar processes are applied in [6, 27, 28].
In contrast to directly outputting absolute body transformations
from the diffusion model [46], this guarantees exact alignment
between estimates and the input SLAM sequences.

3.2.2 Guidance losses

Our diffusion model learns a distribution of human motion
conditioned on the central pupil frame motion. At test time, we

incorporate constraints from physical priors and visual hand
observations via guidance [10, 29, 112]. Similar to [34, 45],
we accomplish this by applying losses to the joint rotations
Θ={Θ1,...,ΘT} predicted by µθ(⃗xn,n,⃗c). We treat the body
shape βt and contacts ψt

j=1...21 as fixed and optimize over
body and finger pose to minimize hand observation, skating,
and prior costs with a Levenberg-Marquardt optimizer:

E(Θ)
guidance=E(Θ)

hands+E(Θ)
skate+E(Θ)

prior. (11)

We begin by running HaMeR on the egocentric image
corresponding to each timestep t. When detected, this produces
3D hand estimates in the form of MANO [76] joint parameters
and camera-centric 3D hand keypoints p̂t

camera,j for hand joint set
j∈H. Optionally, wrist and palm poses can also be estimated
using Project Aria’s Machine Perception Services [82]. With
each subcripted λ indicating a scalar weighting term, we have:

E(Θ)
hands=λhands3DE(Θ)

hands3D+λreprojE(Θ)
reproj. (12)

The 3D objective E(Θ)
hands3D minimizes the distance between the

detected hand parameters and the corresponding SMPL-H
hand parameters, in terms of wrist pose and local joint rotations.
With ΠK as projection with camera intrinsicsK, p(Θt)

world,j∈R3

as the world position for joint j at time t, and Tcamera,cpf from
the device calibration, the reprojection loss is:

E(Θ)
reproj=

∑
t,j∈H

||ΠK(p
(Θt)
camera,j)−ΠK(p̂t

camera,j)||22, (13)

p
(Θt)
camera,j=Tcamera,cpf(T

t
world,cpf)

−1p
(Θt)
world,j. (14)

To reduce foot skating, we use contact predictions to apply a
skating loss [71, 99] for each time t and joint j:

E(Θ)
skate=

∑
t,j

λskate||
1

2
(ψt

j+ψ
t−1
j )(pt

world,j−pt−1
world,j)||

2
2. (15)

Finally, we minimize a prior term E(Θ)
prior. This term penalizes

deviations between each constrained rotation matrix Θt and the
original output rotations Θ̂t from our denoiser µθ(⃗xn,n,⃗c), in
terms of both joint rotation and rotational velocity.

3.2.3 Sequence length extrapolation

For longer sequences at test time, we draw on existing
methods in compositional generation for both image [3, 111]
and human motion [4, 79] diffusion models. We train our
motion prior using subsequences of up to length 128; when
input observations exceed this length at test time, we split
into windows with a 32-timestep overlap between neighbors.
We then run our model µθ(⃗xn, c⃗,n) on windows in parallel.
Diffusion paths for overlapping regions are fused following
MultiDiffusion [3] after each denoising step.



Conditioning Seqlen Invariance 1 / 2 MPJPE ↓ % Diff PA-MPJPE ↓ % Diff GND ↑
EgoAllo (Eq. 4) 32 ✔ / ✔ 129.8±1.1 — 109.8±1.1 — 0.98±0.00

Absolute+Local Relative 32 P / ✔ 133.0±1.1 2.4% 113.6±1.2 3.4% 0.95±0.00

Absolute+Global Deltas [6, 27] 32 ✗ / ✔ 136.2±1.1 4.9% 118.3±1.2 7.7% 0.93±0.01

Sequence Canonicalization [46] 32 ✔ / ✗ 153.1±1.5 17.9% 128.7±1.5 17.1% 0.76±0.01

Absolute 32 ✗ / ✔ 159.9±1.2 23.2% 141.0±1.3 28.4% 0.89±0.01

EgoAllo (Eq. 4) 128 ✔ / ✔ 119.7±1.3 — 101.1±1.3 — 1.00±0.00

Absolute+Local Relative 128 P / ✔ 124.5±1.3 4.0% 104.9±1.4 3.8% 1.00±0.00

Absolute+Global Deltas [6, 27] 128 ✗ / ✔ 127.4±1.3 6.4% 109.8±1.4 8.6% 0.99±0.00

Sequence Canonicalization [46] 128 ✔ / ✗ 134.0±1.8 11.9% 112.1±1.6 10.9% 0.88±0.02

Absolute 128 ✗ / ✔ 148.3±1.5 23.9% 131.2±1.6 29.8% 0.96±0.01

Table 1. Motion prior conditioning comparison. We train and evaluate otherwise identical models using four conditioning parameterizations
on AMASS [54] test set sequences, using sequences of length 32 and 128. Parameterizations vary in their spatial (1) and temporal (2) invariance
properties, which we loosely classify as following completely ( ✔ ), partially ( P ), or not at all ( ✗ ). The conditioning parameterization used
by EgoAllo reduces errors by almost 18% compared to the sequence canonicalization approach used by the most relevant related work [46].

4. Experiments

We conduct a series of experiments to evaluate EgoAllo’s
conditioning parameterization, body estimation accuracy, and
hand estimation performance.

Training. To train EgoAllo models used in our experiments, we
need sequences containing human body and hand pose param-
eters, body shapes, and device SLAM poses Tt

world,cpf. Similar
to prior work [6, 27, 46], we train EgoAllo using AMASS [54]
with synthesized device poses. We annotate train split sequences
by anchoring a central pupil frame between vertices correspond-
ing to the left and right pupils in the blend skinned mesh, and
at train time sample sequences between length 32 and 128.

Evaluation. We evaluate with four datasets. We use
AMASS [54], RICH [25], and Aria Digital Twins (ADT) [58]
for body estimation evaluation, and EgoExo4D [16] for hand
estimation evaluation. AMASS and RICH do not include
egocentric data; we annotate these with synthetic device poses
using the same procedure we use for training. ADT and
EgoExo4D both include egocentric images and SLAM poses
captured using Project Aria glasses [82], which we use directly.

Metrics. To quantify performance, we report four metrics:
(1) MPJPE is a world-frame mean per-joint position error
(millimeters). (2) PA-MPJPE is the Procrustes-aligned mean
per-joint position error in millimeters, where joint positions
are aligned on a per-timestep basis before error are computed.
(3) GND is a grounding metric, designed in response to a
phenomena where ego-sensed humans “float” above the ground.
Given a human body trajectory, this metric contains a simple
binary indicator of whether the feet of the human ever touch
the ground plane. (4) Thead is the average SMPL head joint
position error in millimeters.

4.1. Body estimation

In our first set of experiments, we evaluate body estimation
from only device SLAM poses, without considering images
or hands. This setting allows us to isolate the advantages of our
body motion prior, while facilitating direct comparison against
methods that do not consider hands.

4.1.1 Invariant conditioning evaluation

We begin by evaluating the importance of the spatial and
temporal invariance criteria discussed in Section 3.1.2. We do
this by comparing five implementations of the conditioning
g: (1) EgoAllo is the final invariant representation that we
propose in Equation 4. (2) Absolute+Local Relative
appends absolute poses with the relative pose deltas written
in Equation 3. (3) Absolute+Global Deltas appends
absolute poses with relative orientation and the world-frame
position deltas used by [6, 27]. (4) Sequence Canonical-
ization uses the alignment approach implemented by [46],
which violates temporal invariance. (5) Absolute naively
conditions on absolute poses, which violate spatial invariance.

We train conditional diffusion models with otherwise
identical architecture using each parameterization, and then
evaluate on the AMASS [54] test set. Metrics and percent
differences compared to EgoAllo are reported in Table 1.

Overall, we find that the choice of conditioning parame-
terization makes a dramatic impact on estimation accuracy.
We observe accuracy improve consistently as invariance
properties are incorporated into the representation. Compared
to EgoAllo, Absolute conditioning increases MPJPE
by over 23% for both shorter (length 32) and longer (length
128) sequences. Compared to EgoAllo, SeqCanonical
conditioning increases MPJPE by nearly 18% for length 32
sequences and 12% for length 128 sequences.



AMASS [54]

Method Seq MPJPE ↓ PA-MPJPE ↓ GND ↑ Thead ↓
EgoAllo 32 129.8±1.1 109.8±1.1 0.98±0.00 6.4±0.1

NoShape 32 138.1±1.1 118.8±1.1 0.94±0.01 44.7±0.4

EgoEgo 32 184.0±1.5 158.6±1.6 0.81±0.01 45.2±1.0

VAE+Opt 32 199.5±1.3 191.4±1.4 0.49±0.01 78.0±1.5

EgoAllo 128 119.7±1.3 101.1±1.3 1.0±0.00 6.2±0.1

NoShape 128 128.1±1.3 110.3±1.4 0.98±0.01 44.6±0.7

EgoEgo 128 167.4±2.1 145.8±2.0 0.92±0.01 54.9±1.9

VAE+Opt 128 205.3±2.6 192.3±2.8 0.75±0.02 67.8±3.1

RICH [25]

Method Seq MPJPE ↓ PA-MPJPE ↓ GND ↑ Thead ↓
EgoAllo 32 193.7±3.4 174.8±3.6 0.95±0.01 8.8±0.2

NoShape 32 200.9±3.3 183.3±3.6 0.73±0.02 44.9±0.9

EgoEgo 32 215.4±3.9 192.9±4.0 0.73±0.02 56.2±2.9

VAE+Opt 32 352.0±6.7 354.8±6.5 0.59±0.02 319.3±11.6

EgoAllo 128 176.2±5.6 160.1±5.9 0.96±0.02 8.9±0.3

NoShape 128 185.7±5.5 169.9±5.8 0.82±0.03 45.8±1.6

EgoEgo 128 207.8±6.9 187.8±6.8 0.88±0.03 66.5±5.4

VAE+Opt 128 319.8±10.1 323.8±10.5 0.75±0.04 274.4±17.6

Aria Digital Twins [58]

Method Seq MPJPE ↓ PA-MPJPE ↓ GND ↑ Thead ↓
EgoAllo 32 173.5±1.1 146.1±1.1 0.88±0.01 -
NoShape 32 178.5±1.1 153.0±1.1 0.89±0.01 -
EgoEgo 32 212.5±1.4 181.3±1.6 0.64±0.01 -
VAE+Opt 32 284.9±1.6 283.9±1.9 0.63±0.01 -

EgoAllo 128 155.1±1.6 129.3±1.6 0.94±0.01 -
NoShape 128 163.7±1.6 140.0±1.6 0.96±0.01 -
EgoEgo 128 182.6±2.3 153.9±2.6 0.73±0.02 -
VAE+Opt 128 290.8±3.8 282.5±4.4 0.7±0.02 -

Table 2. Body estimation performance, compared against a base-
line without shape prediction, EgoEgo [46], and VAE+Opt [71, 99].
We exclude the Thead metric for ADT because the Biomech57 head
joints used by ADT are not directly comparable to the SMPL-H head
joints used by our model.

4.1.2 Comparisons against baselines

To further study EgoAllo’s body estimation quality, we compare
against three baselines. (1) NoShape. First, NoShape refers
to a variation of EgoAllo that turns off shape estimation, and
thus cannot estimate the wearer’s height. (2) EgoEgo. We
also compare against the human motion diffusion model from
EgoEgo [46]. This is similar to EgoAllo, but considers only the
SMPL “mean” body shape and uses canonicalized coordinates
for conditioning and as model output. (3) VAE+Opt. Finally,
we compare against an approach based on the SLAHMR [99]
framework for human motion estimation from exocentric video.
A key advantage of SLAHMR is that it uses an unconditional
motion prior [71] in an optimization framework. It can therefore
be adapted to new settings without re-training—we keep the
same body pose and shape variables as the original pipeline,
but replace the exocentric keypoint [68] cost with an egocentric

(a) Ground-truth

(b) EgoAllo

(c) EgoEgo [46]

(d) VAE+Opt

Figure 4. Egocentric human motion estimation for a running
sequence. We show the ground-truth, an output from EgoAllo, and
outputs from two baselines. The glasses CAD model is placed at the
conditioning transformation Tworld,cpf.

CPF pose alignment cost.

Due to differences in problem formulation, many existing
methods for egocentric human motion estimation are difficult
to directly compare. This is particularly true when they have
different inputs, such as fisheye cameras [88, 92, 93], wrist-
mounted sensors [44], or handheld controller poses [6, 27, 28].
Additionally, prior works like EgoEgo [46] do not incorporate
vision inputs for hand estimation. For fairness, we restrict all



(a) Ground-truth

(b) EgoAllo

(c) EgoEgo [46]

(d) VAE+Opt

Figure 5. Egocentric human motion estimation for a squatting
sequence. The contents of this figure mirror Figure 4, but use spatial
shifts to visualize different timesteps within a sequence.

methods in this section to only CPF or head pose as input.

EgoAllo improves body motion estimates. We report metrics
in Table 2 and visualize example outputs in Figures 4 and 5. We
find that EgoAllo enables significant estimation improvements
across all datasets, including 20∼30% accuracy improvements
over EgoEgo for both shorter and longer evaluation sequences.
We found shape estimation critical for producing metric-scale,
grounded estimates of human body motion, with the head
aligned to input SLAM poses and the feet planted on the
observed ground plane. This is evident in qualitative results,
improved grounding metrics, and in the 6∼7% MPJPE gap
between EgoAllo and the NoShape ablation.

VAE optimization converges poorly. Optimization-based
estimation approaches have been effective for settings with
keypoint costs [71, 99], but we found convergence difficult in
our less constrained setting. In Table 2, we observe poor gener-
alization: VAE+Opt performs competitively on the AMASS test

set, but performance deteriorates dramatically when evaluating
on RICH or Aria Digital Twins. VAE+Opt outputs in Figure 4
also look overly smoothed, without the same expressiveness
as the conditional predictions of EgoAllo or EgoEgo [46]. This
highlights the advantage of using a conditional diffusion model
problem for this estimation problem.

Shape estimation evaluation. To better understand the shape
estimation characteristics of EgoAllo, we compare against
against the “mean” shape used by EgoEgo and the NoShape
ablation. On the AMASS test set, we find: EgoAllo slightly
improves overall shape (19mm→18mm mean vertex-to-vertex
error) and produces much better height (52mm→32mm mean
height error), but is not able to generalize in terms of body
weight (5kg → 8kg mean weight error). The body shape is
inferred from the wearer’s head pose, which intuitively provides
strong height constraints but is less correlated with weight.
Accurate height is key for proper scene placement, as reflected
by both the MPJPE and GND metrics.

4.2. Hand estimation

To evaluate evaluate hands estimated by EgoAllo, we run
HaMeR on the segment of the EgoExo4D [16] validation set
that is labeled with 3D hand pose keypoints. We quantitatively
compare four hand estimation methods in Table 4.2. In
(1) HaMeR [63], we use HaMeR out-of-the-box on undistorted
egocentric RGB images. We do not assume bounding boxes as
input; instead, we follow the HaMeR demo code and compute
crops using ViTPose [96]. When multiple hands are detected for
a single side, we naively take the first one. (2) EgoAllo-Mono
refers our full system, which uses the same monocular HaMeR
hand estimates for guidance. In (3) EgoAllo-Wrist3D, we aug-
ment our system with wrist pose estimates from Project Aria’s
Machine Perception Services [82]—unlike HaMeR, which as-
sumes monocular input, this uses a pair of SLAM cameras that
are unique to Project Aria. Finally, (4) EgoAllo-NoReproj re-
moves the reprojection term (Equation 14) from EgoAllo-Mono.
Instead, hand guidance is done directly using the 3D wrist poses
predicted by HaMeR. For fairness across settings, we compute
metrics only on timesteps where HaMeR estimates are available.

Quantitative results are provided in Table 3. While
HaMeR’s local poses (PA-MPJPE) are slightly better, EgoAllo’s
hand-body estimation significantly improves how well hands
are estimated in the world coordinate system. Compared to
HaMeR, EgoAllo drops MPJPE from 237.90mm→131.45mm.
Incorporating more accurate wrist pose estimates (EgoAllo-
Wrist3D) offers a practical solution for further improvements:
131.45mm→ 60.08mm. Reprojection-based guidance is also
more robust: EgoAllo-NoReproj outputs are the worst in both
MPJPE and PA-MPJPE.

Qualitatively, we observed that high hand estimation errors
in naive monocular estimation with HaMeR are explained by
a combination of detection failures and monocular ambiguities.
Even when detections succeed, the scale and distance of



Figure 6. Body estimation improves hand estimation. We show raw
outputs from HaMeR [63] in blue and hand-body estimations from
EgoAllo in purple. Top: improved scene interaction during touchscreen
operation with EgoAllo-Mono. We know a priori that the fingers are
contacting the screen in this sequence. Bottom: qualitative examples
from EgoExo [16] evaluation, showing the differences between
monocular hands and EgoAllo-Wrist3D estimates.

Method MPJPE ↓ PA-MPJPE ↓
HaMeR 237.90±1.89 13.04±1.89

EgoAllo-Mono 131.45±0.39 14.71±0.39

EgoAllo-Wrist3D 60.08±0.26 14.38±0.26

EgoAllo-NoReproj 143.20±0.42 14.75±0.42

Table 3. Hand estimation errors in millimeters. EgoAllo’s hand-body
estimation can constrain and resolve ambiguities in noisy outputs from
HaMeR, which we observe can reduce MPJPE for hands by over 40%.

monocular HaMeR estimates are often incorrect or flicker in
between frames. Incorporating these hands via guidance with
our diffusion motion prior encourages final outputs that obey
the kinematic and smoothness constraints imposed by plausible
body motion—we provide examples of HaMeR estimates
rendered jointly with EgoAllo outputs in Figure 6, where we
note realistic elbow and shoulder poses.

5. Dicussion

Limitations and future work. While the core contributions of
EgoAllo are general, the current implementation of our system
has a few limitations that we hope to explore in future work.
First, diffusion model guidance is a test-time optimization
process that depends on hyperparameters and incurs a runtime
cost. In the future, it may be possible to bootstrap using outputs
from our model to train a feedforward model that avoids this

step. Success for hand guidance also still depends on reasonable
monocular hand estimates. Estimation can therefore fail as a
result of errors like left/right flipping or spurious detections,
which we found causes high errors in our Table 3 hand estima-
tion metrics. Finally, we also train only on AMASS [54], which
includes floor planes but no detailed scene geometry. As a result,
our method will fail if we cannot detect an approximate floor
plane; this is most likely in settings like hills or staircases. In the
future, we hope to extend our insights to data with more detailed
scene information, which concurrent work has highlighted the
usefulness of in informing human body estimation [20].

Conclusion. We presented EgoAllo, a system for estimating
human motion using sensors from head-mounted devices. Our
method takes advantage of motion capture data [54] and an
off-the-shelf visual hand estimator [63] to jointly estimate
human body pose, height, and hand parameters. EgoAllo
highlights the importance of spatial and temporal invariance
in conditioning for this problem, while demonstrating how
estimated bodies can be used to improve hand estimation.
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A. Appendix
A.1. Floor height estimation

A key requirement of our algorithm is SLAM poses that can be
situated relative to the floor. While floor heights are provided
in our training data, they are not directly available on real-world
data. We found that a simple RANSAC-based algorithm works
well on real-world data from Project Aria [58]. We filter SLAM
points by confidence, then use RANSAC to find a z-value with
that best fits a plane. Example floor plane outputs using scenes
from the EgoExo4D [16] dataset are shown in Figure 7.

A.2. Sequence length evaluation

At test time, EgoAllo follows MultiDiffusion [3] for extrap-
olating to sequences that are longer than the 128 that we use
for training. To evaluate that this works, we filter out test
sequences shorter than 256 frames and then evaluate both
EgoAllo and EgoEgo [46] with subsequences of size 32, 128,
and 256. We report metrics on these sequences in Table 4.
Both EgoAllo and EgoEgo include windowing strategies for
handling longer sequences; unlike prior work, however, we find
that the EgoAllo system improves even after test set sequence
lengths surpass the training set sequence length.

Seqlen 32 128 256

EgoAllo 149.3 130.3 127.9
EgoEgo 187.7 173.8 184.3

Table 4. How does MPJPE change with sequence length?

A.2.1 Biomech57 evaluation details

The majority of our evaluation data (AMASS [54] and
RICH [25]) is provided directly using SMPL conventions.
Because our model outputs SMPL-H parameters, this makes
computation of joint error metrics straightforward.

The one exception is the Aria Digital Twins dataset [58],
which we use for quantitative body metrics. Each device wearer
in the Aria Digital Twins dataset is recorded via an Optitrack
motion capture system, which records 57 joint locations (30
hand joints, 27 body joints) following the Biomech57 joint
template. To evaluate our method on ADT, we match and
compare the common major joints between the two templates.
We manually corresponded each of the 57 joints between
Biomech57 and the standard SMPL-H joint conventions. While
the majority of these have 1:1 correspondences—feet, knees,
hips, shoulders, elbows, wrist, and finger joints, for example,
are consistently defined—we mask out others like the head and
collar bone joints that are misaligned.

A.3. Implementation details

We use a transformer [91] architecture with rotary positional
embeddings [85] for EgoAllo’s denoising model µθ(⃗xn,⃗c,n).

Figure 7. Floor height examples. Point cloud-derived floor height
examples on the EgoExo4D dataset.

Latent representations z⃗c for conditioning sequences c⃗ are
computed using six transformer blocks, each containing a
self-attention layer followed by a 2-layer MLP. Skip connections
are used throughout. The denoised output is produced by using
six additional transformer blocks that take x⃗n as input, while
conditioning on z⃗c via cross-attention. All hidden dimensions
are set to 512. For guidance, we use infrastructure for sparse
nonlinear least squares implemented in [100]. For additional
details, we refer to our code release.

A.4. Runtimes

Without guidance, each denoising step takes around 0.05
seconds on an RTX 4090; our experiments use 30 DDIM steps
for sampling. The guidance optimizer can typically converge
in around 0.2 seconds on GPU. Runtimes are reported on
length-128 sequences.
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